Part Number Hot Search : 
TS912IDT 78L24 APED3528 8BFI0F A200012 TA115 M24C08W 1E331
Product Description
Full Text Search
 

To Download MB3878 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 FUJITSU SEMICONDUCTOR DATA SHEET
DS04-27706-2E
ASSP For Power Supply Applications (Secondary battery)
DC/DC Converter IC for Charging
MB3878
s DESCRIPTION
The MB3878 is a DC/DC converter IC suitable for down-conversion, using pulse-width (PWM) charging and enabling output voltage to be set to any desired level from one cell to four cells. These ICs can dynamically control the secondary battery's charge current by detecting a voltage drop in an AC adaptor in order to keep its power constant (dynamically-controlled charging). The charging method enables quick charging, for example, with the AC adaptor during operation of a notebook PC The MB3878 provides a broad power supply voltage range and low standby current as well as high efficiency, making it ideal for use as a built-in charging device in products such as notebook PC. This product is covered by US Patent Number 6,147,477.
s FEATURES
* Detecting a voltage drop in the AC adaptor and dynamically controlling the charge current (Dynamically-controlled charging) * Output voltage setting using external resistor : 1 cell to 4 cells * High efficiency : 94 % * Wide range of operating supply voltages : 7 V to 25 V * Output voltage setting accuracy : 4.2V 0.8% (per cell) * Built-in frequency setting capacitor enables frequency setting using external resistor only * Oscillator frequency range : 100kHz to 500kHz
(Continued)
s PACKAGE
24-pin plastic SSOP
(FPT-24P-M03)
MB3878
(Continued) * Built-in current detector amplifier with wide in-phase input voltage range : 0 V to Vcc * In standby mode, leave output voltage setting resistor open to prevent inefficient current loss * Built-in standby current function : 0 A (standard) * Built-in soft-start function * Built-in totem-pole output stage supporting P-channel MOS FETs devices
s PIN ASSIGNMENT
(TOP VIEW)
-INC2 : 1 OUTC2 : 2 +INE2 : 3 -INE2 : 4 FB2 : 5 VREF : 6 FB1 : 7 -INE1 : 8 +INE1 : 9 OUTC1 : 10 OUTD : 11 -INC1 : 12
24 : +INC2 23 : GND 22 : CS 21 : VCC (O) 20 : OUT 19 : VH 18 : VCC 17 : RT 16 : -INE3 15 : FB3 14 : CTL 13 : +INC1
(FPT-24P-M03)
2
MB3878
s PIN DESCRIPTION
Pin No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Symbol -INC2 OUTC2 +INE2 -INE2 FB2 VREF FB1 -INE1 +INE1 OUTC1 OUTD -INC1 +INC1 CTL FB3 -INE3 RT VCC VH OUT VCC (O) CS GND +INC2 I/O I O I I O O O I I O O I I I O I O O I Descriptions Current detection amplifier (Current Amp. 2) input pin. Current detection amplifier (Current Amp. 2) output pin. Error amplifier (Error Amp. 2) non-inverted input pin. Error amplifier (Error Amp. 2) inverted input pin. Error amplifier (Error Amp. 2) output pin. Reference voltage output pin. Error amplifier (Error Amp. 1) output pin. Error amplifier (Error Amp. 1) inverted input pin Error amplifier (Error Amp. 3) non-inverted input pin. Current detection amplifier (Current Amp. 1) output pin. With IC in standby mode, this pin is left open to prevent loss of current through output voltage setting resistance. Set CTL pin to "H" level and OUTD pin to "L" level. Current detector amplifier (Current Amp. 1) input pin. Current detector amplifier (Current Amp. 1) input pin. Power supply control pin. Setting the CTL pin low places the IC in the standby mode. Error amplifier (Error Amp. 3) output pin. Error amplifier (Error Amp. 3) inverted input pin. Triangular-wave oscillation frequency setting resistor connection pin. Power supply pin for reference power supply and control circuit. Power supply pin for FET drive circuit (VH = Vcc - 5 V). High-side FET gate drive pin. Output circuit power supply pin. Soft-start capacitor connection pin. Ground pin. Current detection amplifier (Current Amp. 2) input pin.
3
MB3878
s BLOCK DIAGRAM
-INE1 8 OUTC1 10 + x 25 - -INC1 12 +INE1 9 FB1 7 -INE2 4 OUTC2 2 +INC2 24 -INC2 1 +INE2 3 FB2 5 2.5 V 1.5 V VREF -INE3 16 OUTD 11
- + +
+INC1 13
VREF - + + + + Drive - 21 VCC (O)
20 OUT
+ x 25 -
VREF - +
VCC Bias Voltage 19 VH (VCC - 5 V)
VCC
(VCC UVLO) 215 k + - 35 k
4.2 V FB3 15
0.91 V (0.77 V) VREF UVLO VCC
VREF 1 A bias (45 pF) 17 RT
CS 22
18 VCC 14 CTL

VREF 5.0 V 6 23 GND VREF
4
MB3878
s ABSOLUTE MAXIMUM RAGINGS
Parameter Power supply voltage Output current Peak output current Power dissipation Storage temperature Symbol VCC IOUT IOUT PD Tstg Ta +25 C Conditions VCC, VCC (O) Duty 5 % (t = 1 / fOSC x Duty) Rating Min -55 Max 28 60 500 740* +125 Unit V mA mA mW C
* : The package is mounted on the dual-sided epoxy board (10 cm x 10 cm). WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.
s RECOMMENDED OPERATING CONDITIONS
Parameter Power supply voltage Reference voltage output current VH pin output current Input voltage OUTD pin output voltage OUTD pin output current CTL pin input voltage output current Peak output current Oscillator frequency Timing resistor Soft-start capacitor VH pin capacitor Reference voltage output capacitor Operating ambient temperature
Symbol
Conditions VCC, VCC (O) -INE1 to -INE3, +INE1, +INE2 +INC1, +INC2, -INC1, -INC2 Duty 5 % (t = 1 / fosc x Duty)
Value Min 7 -1 0 0 0 0 0 0 -45 -450 100 33 -30 Typ 290 47 2200 0.1 0.1 +25 Max 25 0 30 VCC - 1.8 VCC 17 2 25 45 450 500 130 100000 1.0 1.0 +85
Unit V mA mA V V V mA V mA mA kHz k pF F F C
VCC IREF IVH VINE VINC VOUTD IOUTD VCTL IOUT IOUT fOSC RT CS CVH CREF Ta
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges. Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand. 5
MB3878
s ELECTRICAL CHARACTERISTICS
(Ta = +25 C, VCC = 19 V, VCC (O) = 19 V, VREF = 0 mA) Value Pin Symbol Conditions Unit No. Min Typ Max VREF Line Load Ios VTLH Threshold voltage Under voltage lockout protection Hysteresis width circuit block (UVLO) Threshold voltage Hysteresis width Soft-start block (SOFT) Triangular waveform oscillator circuit block (OSC) Charge current Oscillation frequency Frequency temperature stability Input offset voltage Input bias current Common mode input voltage range Error amplifier block (Error Amp.1, Error Amp.2) Voltage gain Frequency bandwidth Output voltage Output source current Output sink current * : Standard design value. VTHL VH VTLH VTHL VH ICS fOSC f/fdt VIO IB 18 18 6 6 6 22 20 6 6 6 6 18 Ta = +25 C Ta = -30 C to +85 C VCC = 7 V to 25 V VREF = 0 mA to -1 mA VREF = 1 V VCC = VCC (O) , VCC = VCC = VCC (O) , VCC = VCC = VCC (O) VREF = VREF = VH = VTLH - VTHL RT = 47 k Ta = -30 C to +85 C 4.995 4.945 -25 6.1 5.1 0.7 2.6 2.4 0.05 -1.3 260 -100 0 4.7 150 5.000 5.000 3 1 -15 6.4 5.4 1.0 2.8 2.6 0.20 -0.8 290 5.045 5.055 10 10 -5 6.7 5.7 1.3 3.0 2.8 0.35 -0.5 320 5 VCC - 1.8 200 -0.6 V V mV mV mA V V V V V V A kHz % mV nA
Parameter Output voltage Reference voltage block (Ref) Input stability Load stability Short-circuit output current
20
1*
3, 4, FB1 = FB2 = 2 V 8, 9 3, 4, 8, 9 3, 4, 8, 9 5, 7 DC 5, 7 AV = 0 dB 5, 7 5, 7
1 -30 100* 2.0* 4.9 20 -2.0 300
VCM AV BW VFBH VFBL ISOURCE ISINK
V dB MHz V mV mA A
5, 7 FB1 = FB2 = 2 V 5, 7 FB1 = FB2 = 2 V
(Continued)
6
MB3878
(Ta = +25 C, VCC = 19 V, VCC (O) = 19 V, VREF = 0 mA) Value Pin Symbol Conditions Unit No. Min Typ Max VTH1 Threshold voltage Input current Voltage gain Frequency bandwidth Output voltage Output source current
Output sink current
Parameter
16 16 16 15 15 15 15 15 15 11 11 13, 24 1, 12 13, 24 1, 12 2, 10 2, 10 2, 10 2, 10 1, 12, 13, 24 2, 10 2, 10
FB3 = 2 V, Ta = +25 C FB3 = 2 V, Ta = -30 C to +85 C -INE3 = 0 V DC AV = 0 dB FB3 = 2 V FB3 = 2 V OUTD = 16.8 V OUTD = 1 mA
+INC1 = +INC2 = 12.7 V, -INC1 = -INC2 = 12.6 V +INC1 = +INC2 = 12.7 V, -INC1 = -INC2 = 12.6 V +INC1 = +INC2 = 0.1 V, -INC1 = -INC2 = 0 V +INC1 = +INC2 = 0.1 V, -INC1 = -INC2 = 0 V +INC1 = +INC2 = 12.7 V, -INC1 = -INC2 = 12.6 V +INC1 = +INC2 = 12.63 V, -INC1 = -INC2 = 12.6 V +INC1 = +INC2 = 0.1 V, -INC1 = -INC2 = 0 V +INC1 = +INC2 = 0.03 V, -INC1 = -INC2 = 0 V
4.167 4.158 -100 4.7 150 -130 -140 2.25 0.50 1.25 0.125
4.200 4.200 -30 100* 2.0* 4.9 20 -2.0 300 0 70 10 0.1 -65 -70 2.5 0.75 2.50 0.750
4.233 4.242 200 -0.6 1 100 20 0.2 2.75 1.00 3.75 1.375
V V nA dB MHz V mV mA A A A A A A V V V V
VTH2 IINE3 AV BW VFBH VFBL ISOURCE ISINK ILEAK RON I+INCH I-INCH
Error amplifier block (Error Amp.3)
OUTD pin output leak current OUTD pin output ON resistor
Input current I+INCL I-INCL VOUTC1 Current detection amplifier block (Current Amp.1, Current Amp.2) VOUTC2 VOUTC3 VOUTC4 Common mode input voltage range Voltage gain Frequency bandwidth * : Standard design value.
Current detection voltage
VCM
+INC1 = +INC2 = 12.7 V, -INC1 = -INC2 = 12.6 V
0
Vcc
V
AV BW
22.5
25 2.0*
27.5
V/V MHz
AV = 0 dB
(Continued)
7
MB3878
(Continued)
Parameter Output voltage Current detection amplifier block Output source (Current Amp.1, current Current Amp.2) Output sink current PWM comparator block Threshold voltage (PWM Comp.) Output source current Output sink current Output block (OUT) Output ON resistor Rise time Fall time CTL input voltage Control block (CTL) Input current Bias voltage block (VH) (Ta = +25 C, VCC = 19 V, VCC (O) = 19 V, VREF = 0 mA) Value Pin Symbol Conditions Unit No. Min Typ Max VOUTCH 2, 10 4.7 150 1.4 2 0 VCC - 5.5 4.9 20 -2.0 300 1.5 2.5 -200* 200* 8.0 6.5 70* 60* 100 0 VCC - 5.0 0 8.0 200 -0.6 2.6 12.0 9.7 25 0.8 200 1 VCC - 4.5 10 12.0 V mV mA A V V mA mA ns ns V V A A V A mA VOUTCL 2, 10 ISOURCE ISINK VTL VTH ISOURCE ISINK ROH ROL tr1 tf1 VON VOFF ICTLH ICTLL VH
2, 10 OUTC1 = OUTC2 = 2 V 2, 10 OUTC1 = OUTC2 = 2 V 5, 7, Duty cycle = 0 % 15 5, 7, Duty cycle = 100 % 15 20 20 20 20 20 20 14 14 14 14 19 18, 19 18, 19 OUT = 11 V, Duty 5 % (t = 1 / fOSC x Duty) OUT = 16 V, Duty 5 % (t = 1 / fOSC x Duty) OUT = -45 mA OUT = 45 mA
(equivalent to Si4435 x 1)
OUT = 3300 pF
OUT = 3300 pF Active mode Standby mode CTL = 5 V CTL = 0 V
(equivalent to Si4435 x 1)
Output voltage
VCC = VCC (O) = 7 V to 25 V, VH = 0 to 30 mA VCC = VCC (O) , CTL = 0 V VCC = VCC (O) , CTL = 5 V
Standby current General Power supply current
ICCS ICC
* : Standard design value
8
MB3878
s TYPICAL CHARACTERISTICS
Power supply current vs. power supply voltage
12 10 8 6 4 2 0 0 5 10 15 20 25 Ta = +25 C CTL = 5 V
Reference voltage vs. power supply voltage
10 Ta = +25 C CTL = 5 V VREF = 0 mA
Reference voltage VREF (V)
Power supply current ICC (mA)
8 6 4 2 0 0 5 10 15
20
25
Power supply voltage VCC (V) Reference voltage vs. VREF load current
10
Power supply voltage VCC (V) Reference voltage vs. ambient temperature
2.0
Reference voltage VREF (V)
Reference voltage VREF (%)
8 6 4 2 0 0 5 10 15 20
Ta = +25 C VCC = 19 V CTL = 5 V
1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 -40 -20 0 20 40
VCC = 19 V CTL = 5 V VREF = 0 mA
25
30
60
80
100
VREF load current IREF (mA) Reference voltage vs. CTL pin voltage
10 Ta = +25 C VCC = 19 V VREF = 0 mA 1.0
Ambient temperature Ta ( C) CTL pin current vs. CTL pin voltage
Ta = +25 C VCC = 19 V
Reference voltage VREF (V)
CTL pin current ICTL (mA)
8 6 4 2 0 0 0.5 1 1.5
0.8 0.6 0.4 0.2 0.0
2
2.5
0
5
10
15
20
25
CTL pin voltage VCTL (V)
CTL pin voltage VCTL (V)
(Continued)
9
MB3878
Triangular wave oscillator frequency fOSC (Hz)
Triangular wave oscillator frequency fOSC (kHz)
Triangular wave oscillator frequency vs. timing resistor
1M Ta = +25 C VCC = 19 V CTL = 5 V
Triangular wave oscillator frequency vs. power supply voltage
340 330 320 310 300 290 280 270 260 250 240 0 5 10 15 20 25 Ta = +25 C CTL = 5 V RT = 47 k
100 k
10 k 10 k
100 k
1M
Timing resistor RT () Triangular wave oscillator frequency Error amplifier threshold voltage VTH (%)
340 330 VCC = 19 V CTL = 5 V RT = 47 k 5.0 4.0 3.0 2.0 1.0 0.0 -1.0 -2.0 -3.0 -4.0 -5.0 -40
Power supply voltage VCC (V) Error amplifier threshold voltage vs. ambient temperature (Error Amp.3)
VCC = 19 V CTL = 5 V
Triangular wave oscillator frequency fOSC (kHz)
320 310 300 290 280 270 260 250 240 -40 -20 0 20 40
60
80
100
-20
0
20
40
60
80
100
Ambient temperature Ta ( C)
Ambient temperature Ta ( C)
(Continued)
10
MB3878
(Continued)
Error amplifier gain and phase vs. frequency
40 AV Ta = +25 C 180 5.2 V VCC = 19 V 240 k
Phase (deg)
Gain AV (dB)
20
90
IN
1 F
-+
10 k 2.4 k
0
0
8 (4)
- 7 (5)
OUT
-20 -40 1k 10 k 100 k 1M
-90
10 k
9+ (3) 2.5 V Error Amp.1 (Error Amp.2)
-180 10 M
Frequency f (Hz) Current detection amplifier gain and phase vs. frequency
40 Ta = +25 C 180 VCC = 19 V
Phase (deg)
20
AV
90
Gain AV (dB)
0
0
-20 -40 1k 10 k 100 k 1M
-90
12.6 V -180 10 M
13 + OUT (24) x25 10 (2) 12 - (1) 12.55 V Current Amp.1 (Current Amp.2)
Frequency f (Hz) Power dissipation vs. ambient temperature Power dissipation PD (mW)
800 740 700 600 500 400 300 200 100 0 -40 -20 0 20 40 60 80 100
Ambient temperature Ta ( C)
11
MB3878
s FUNCTIONAL DESCRIPTION
1. DC/DC Converter Unit
(1) Reference voltage block (Ref) The reference voltage generator uses the voltage supplied from the VCC terminal (pin 18) to generate a temperature-compensated, stable voltage (5.0V Typ) used as the reference supply voltage for the IC's internal circuitry. This pin can also be used to obtain a load current to a maximum of 1mA from the reference voltage VREF terminal (pin 6). (2) Triangular wave oscillator block (OSC) The triangular wave oscillator builds the capacitor for frequency setting into, and generates the triangular wave oscillator waveform by connecting the frequency setting resistor with the RT terminal (pin 17). The triangular wave is input to the PWM comparator on the IC. (3) Error amplifier block (Error Amp.1) This amplifier detects the output signal from the current detector ampifier (Current amp .1), compares this to the +INE1 terminal (pin 9), and outputs a PWM control signal to be used in controlling the charging current. In addition, an arbitrary loop gain can be set up by connecting a feedback resistor and capacitor between the FB1 terminal (pin 7) and -INE terminal (pin 8), providing stable phase compensation to the system. (4) Error amplifier block (Error Amp.2) This amplifier (Error Amp.2) detects voltage pendency of the AC adaptor and outputs a PWM control signal. In addition, an arbitrary loop gain can be set by connecting a feedback resistor and capacitor from the FB2 terminal (pin 5) to the -INE2 terminal (pin 4) of the error amplifier, enabling stable phase compensation to the system. (5) Error amplifier block (Error Amp.3) This error amplifier (Error Amp. 3) detects the output voltage from the DC/DC converter and outputs the PWM control signal. External output voltage setting resistors can be connected to the error amplifier inverse input pin to set the desired level of output voltage from 1 cell to 4 cells. In addition, an arbitrary loop gain can be set by connecting a feedback resistor and capacitor from the FB3 terminal (pin 15) to the -INE3 terminal (pin 16) of the error amplifier, enabling stable phase compensation to the system. Connecting a soft-start capacitor to the CS terminal (pin 22) prevents surge currents when the IC is turned on. Using an error amplifier for soft-start detection makes the soft-start time constant, independent of the output load. (6) Current detector amplifier block (Current Amp.1) The current detection amplifier (Current Amp.1) detects a voltage drop which occurs between both ends of the output sense resistor (RS) due to the flow of the charge current, using the +INC1 terminal (pin 13) and -INC1 terminal (pin 12). Then it outputs the signal amplified by 25 times to the error amplifier (Error Amp.1) at the next stage.
12
MB3878
(7) PWM comparator block (PWM Comp.) The PWM comparator circuit is a voltage-pulse width converter for controlling the output duty of the error amplifiers (Error Amp. 1 to Error Amp. 3) depending on their output voltage. The PWM comparator circuit compares the triangular wave generated by the triangular wave oscillator to the error amplifier output voltage and turns on the external output transistor during the interval in which the triangular wave voltage is lower than the error amplifier output voltage. (8) Output block (OUT) The output circuit uses a totem-pole configuration capable of driving an external P-channel MOS FET. The output "L" level sets the output amplitude to 5 V (Typ) using the voltage generated by the bias voltage block (VH). This results in increasing conversion efficiency and suppressing the withstand voltage of the connected external transistor in a wide range of input voltages. (9) Control block (CTL) Setting the CTL terminal (pin 14) low places the IC in the standby mode. (The supply current is 10 A at maximum in the standby mode.) (10) Bias voltage block (VH) The bias voltage circuit outputs Vcc - 5 V (Typ) as the minimum potential of the output circuit. In the standby mode, this circuit outputs the potential equal to Vcc.
2. Protection Functions
Under voltage lockout protection circuit (UVLO) The transient state or a momentary decrease in supply voltage or internal reference voltage (VREF), which occurs when the power supply is turned on, may cause malfunctions in the control IC, resulting in breakdown or degradation of the system. To prevent such malfunction, the under voltage lockout protection circuit detects a supply voltage or internal reference voltage drop and fixes the OUT terminal (pin 20) to the "H" level. The system restores voltage supply when the supply voltage or internal reference voltage reaches the threshold voltage of the under voltage lockout protection circuit.
3. Soft-start Function
Soft-start block (SOFT) Connecting a capacitor to the CS terminal (pin 22) prevents surge currents when the IC is turned on. Using an error amplifier for soft-start detection makes the soft-start time constant, independent of the output load of the DC/DC converter.
13
MB3878
s SETTING THE CHARGING VOLTAGE
The charging voltage (DC/DC output voltage) can be set by connecting external voltage setting resistors (R3, R4) to the -INE3 terminal. Be sure to select a resistor value that allows you to ignore the on resistor (70 , 1mA) of the internal FET connected to the OUTD terminal (pin 11). Battery charging voltage: VO
VO (V) = (R3 + R4) / R4 x 4.2 (V)
B VO
R3 -INE3 16
< Error Amp.3 > - + +
R4 11 OUTD
4.2 V
22 CS
s METHOD OF SETTING THE CHARGING CURRENT
The charge current (output control current) value can be set with the voltage at the +INE1 terminal (pin 9). If a current exceeding the set value attempts to flow, the charge voltage drops according to the set current value. Battery charge current setting voltage : +INE1 +INE1 (V) = 25 x I1 (A) x RS ()
s METHOD OF SETTING THE SOFT-START TIME
Upon activation, the IC starts charging the capacitor (Cs) connected to the CS terminal (pin 22). The error amplifier causes soft-start operation to be performed with the output voltage in proportion to the CS terminal voltage regardless of the load current of the DC/DC converter. Soft-start time: ts (Time taken for the output voltage to reach 100 %) ts (s) = 4.2 x CS (F) :
s METHOD OF SETTING THE TRIANGULAR WAVE OSCILLATOR FREQUENCY
The trianguar wave oscillator frequency can be set by the timing resistor (RT) connected the RT terminal (pin 17). Triangular wave oscillator frequency: fOSC fOSC (kHz) = 13630 / RT (k) : 14
MB3878
s AC ADAPTOR VOLTAGE DETECTION
With an external resistor connected to the +INE2 terminal(pin 3), the IC enters the dynamically-controlled charging mode to reduce the charge current to keep AC adaptor power constant when the partial potential point A of the AC adaptor voltage (Vcc) becomes lower than the voltage at the -INE2 terminal. AC adaptor detected voltage setting: Vth Vth (V) = (R1 + R2) / R2 x -INE2 -INE2 setting voltage range : 1.176 V to 4.2 V (equivalent to 7 V to 25 V for Vcc)
-INE2 4 VCC R1 R2 A +INE2 3
- +
s OPERATION TIMING DIAGRAM
2.5 V Error Amp.1 FB1 Error Amp.3 FB3 Error Amp.2 FB2
1.5 V
OUT
AC adaptor dynamically- Constant controlled charging voltage control
Constant current control
AC adaptor dynamicallycontrolled charging
15
MB3878
s PROCESSING WITHOUT USE OF THE CS PIN
If the soft-start function is not used, the CS terminal (pin 22) should be left open.
Open
CS 22
When no soft-start time is specified.
s NOTE ON AN EXTERNAL REVERSE-CURRENT PREVENTIVE DIODE
* Insert a reverse-current preventive diode at one of the three locations marked * to prevent reverse current from the battery. * When selecting the reverse current prevention diode, be sure to consider the reverse voltage (VR) and reverse current (IR) of the diode.
21
VCC(O)
VIN
A 20 OUT B
I1 RS
BATT
VH 19 Battery
16
R8 100 k -INE1 8 VREF - + 21 AC Adaptor C5 0.1 F C1 22 F A I1 B BATT OUT 20 Q1 + - VIN VCC (O) IIN
R14 1.3 k
R16 R15 200 k 110 -INE2
OUTC1 10 C10 5600 pF +INC1 + A 13 R9 x 25 10 k - B -INC1 12 R12 30 k +INE1 9 R13 FB1 30 k 7 + + + Drive -
Q2
s APPLICATION EXAMPLE 1
SW VCC D1 VH Bias Voltage 19 (VCC - 5 V) C2 100 F + - L1 12 H
R4 82 k +INE2 3 FB2 5 2.5 V 1.5 V VREF - + + - 4.2 V 0.91 V (0.77 V) VREF UVLO VCC CS 22 (45 pF) RT RT 47 k 17 VREF 6 bias VREF 5.0 V 23 GND C9 0.1 F 18 CTL 14 (VCC UVLO) 215 k + 35 k VCC +
R5 330 k
C8 4 10000 pF OUTC2 R10 2 30 k +INC2 24 + R11 x 25 30 k -INC2 1 - VREF -
RS 0.033 + Battery - C3 100 F
R6 68 k R7 22 k
Output voltage (Battery voltage) is adjustable
R18 200 k -INE3 16 R17 C6 100 k 1500 pF 11 R3 OUTD 330 k FB3 15 VREF 1 A
VCC C7 0.1 F
CS 2200 pF
MB3878
Note : SW ON : DCC MODE SW OFF : Dead Battery MODE Range of input voltage VIN=13V to 21V(at Load = 3A)
17
MB3878
s PARTS LIST (for APPLICATION EXAMPLE 1)
COMPONENT Q1 Q2 D1 L1 C1 C2, C3 CS C5 C6 C7 C8 C9 C10 RS RT R3 R4 R5 R6 R7 R8 R9 R10 to R13 R14 R15 R16 R17 R18 Note ITEM FET FET Diode Coil OS Condenser OS Condenser Ceramics Condenser Ceramics Condenser Ceramics Condenser Ceramics Condenser Ceramics Condenser Ceramics Condenser Ceramics Condenser Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor SPECIFICATION Si4435DY 2N7002 MBRS130LT3 12 H 22 F 100 F 2200 pF 0.1 F 1500 pF 0.1 F 10000 pF 0.1 F 5600 pF 0.033 47 k 330 k 82 k 330 k 68 k 22 k 100 k 10 k 30 k 1.3 k 110 200 k 100 k 200 k 4.0 A, 38 m 25 V (10 %) 25 V (10 %) 10 % 16 V 10 % 25 V 10 % 16 V 10 % 1.0 % 1.0 % 1.0 % 0.5 % 0.5 % 0.5 % 1.0 % 1.0 % 1.0 % 0.5 % 0.5 % 0.5 % 5% 0.5 % 0.5 % VENDOR VISHAY SILICONIX VISHAY SILICONIX MOTOROLA SUMIDA PARTS No. Si4435DY 2N7002 MBRS130LT3 CDRH124-12 H

VISHAY SILICONIX : VISHAY Intertechnology, Inc. MOTOROLA : Motorola Japan Ltd. SUMIDA : SUMIDA ELECTRIC CO., Ltd.
18
MB3878
s REFERENCE DATA
Conversion efficiency vs. charge current (Fixed voltage mode)
100
Conversion efficiency vs. charge voltage (Fixed current mode)
100
Conversion efficiency (%)
Conversion efficiency (%)
98 96 94 92 90 88 86 84 82 80 10 m
VIN = 19 V BATT charge voltage = 12.6 V fOSC = 277.9 kHz (%) = (VBATT x IBATT) / (VIN x IIN) x 100
98 96 94 92 90 88 86 84 82 80 0 2 4
VIN = 19 V BATT : Electronic load, (Product of KIKUSUI PLZ-150W)
100 m
1
10
6
8
10
12
14
16
BATT charge current IBATT (A) BATT voltage vs. BATT charge current
18
VIN = 19 V BATT : Electronic load, (Product of KIKUSUI PLZ-150W)
BATT charge voltage VBATT (V)
VBATT (V)
16 14 12 10 8 6 4 2 0 0 1
BATT voltage
Dead Battery MODE
DCC MODE
DCC : Dynamically Controlled Charging 2 3 4 5
BATT charge current Soft-start operating waveforms
IBATT (A) DC/DC converter switching waveforms
VIN = 19 V fOSC = 277.9 kHz Load : BATT = 1 A
BATT (V) 20 15 CTL (V) 10 5 20 15 10 5 0 5V 0 40 80 0 5V
VIN = 19 V Load : BATT = 20 -INE2 = 0 V
OUTH (V) 20 15 10 5 0 FB3 (V) 4 2 5V
20 ms 120 160 200 t (ms)
0 0
2V 2 4 6
1 s 8 10 t (s)
19
20
AC Adaptor R8 100 k -INE1 VIN 8 C VCC (O) 21 C5 0.1 F C1 22 F A OUT 20 Q1 BATT L1 12 H + - C2 100 F RS1 0.033 + Battery - C3 100 F Output voltage (Battery voltage) is adjustable 2.5 V 1.5 V R18 200 k C6 1500 pF R3 330 k 4.2 V FB3 15 VREF 1 A bias (45 pF) RT RT 47 k 17 VREF 6 VREF 5.0 V 23 GND -INE3 16 R17 100 k 11 OUTD VREF - + + VCC + - System RS2 0.033 B D OUTC1 10 A B +INE1 9 7 4 FB1 -INE2 R23 100 k OUTC2 2 C VH Bias Voltage 19 (VCC - 5 V) D + +INC2 24 D1 VREF - VCC C8 10000 pF R10 24 k R11 36 k FB2 5 R7 22 k + + x 25 -INC1 - 12 VREF - +INC1 13
MB3878
C10 5600 pF R9 10 k R14 R12 1.3 k 30 k R13 30 k
R16 200 k
R15 110
Q2
s APPLICATION EXAMPLE 2
SW
+ + + Drive -
R19 100 k + A(1/2)
VIN
VIN + A(2/2)
-
R20 100 k
-
+ x 25 -INC2 1 - +INE2 3
R21 100 k
R22 100 k
(VCC UVLO) 215 k + - 35 k 0.91 V (0.77 V) VREF UVLO VCC
CS 22 CS 2200 pF
VCC 18 CTL 14 C7 0.1 F
C9 0.1 F
Note : SW ON : Differential Charging MODE SW OFF : Dead Battery MODE Range of input voltage VIN = 13V to 21V(at Load = 3A)
MB3878
s PARTS LIST (for APPLICATION EXAMPLE 2)
COMPONENT Q1 Q2 D1 A L1 C1 C2, C3 CS C5 C6 C7 C8 C9 C10 RS1, RS2 RT R3 R7 R8 R9 R10 R11 R12, R13 R14 R15 R16 R17 R18 R19, R20 R21, R22 R23 Note ITEM FET FET Diode Dual Op-amp Coil OS Condenser OS Condenser Ceramics Condenser Ceramics Condenser Ceramics Condenser Ceramics Condenser Ceramics Condenser Ceramics Condenser Ceramics Condenser Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor SPECIFICATION Si4435DY 2N7002 MBRS130LT3 MB47358 12 H 22 F 100 F 2200 pF 0.1 F 1500 pF 0.1 F 10000 pF 0.1 F 5600 pF 0.033 47 k 330 k 22 k 100 k 10 k 36 k 27 k 30 k 1.3 k 110 200 k 100 k 200 k 100 k 100 k 100 k 4.0 A, 38 m 25 V (10 %) 25 V (10 %) 10 % 16 V 10 % 25 V 10 % 16 V 10 % 1.0 % 1.0 % 1.0 % 1.0 % 1.0 % 1.0 % 0.5 % 0.5 % 0.5 % 0.5 % 0.5 % 5% 1.0 % 0.5 % 1.0 % 0.5 % 1.0 % VENDOR VISHAY SILICONIX VISHAY SILICONIX MOTOROLA Our Company SUMIDA PARTS No. Si4435DY 2N7002 MBRS130LT3 MB47358 CDRH124-12 H

VISHAY SILICONIX : VISHAY Intertechnology, Inc. MOTOROLA : Motorola Japan Ltd. SUMIDA : SUMIDA ELECTRIC CO., Ltd.
21
MB3878
s USAGE PRECAUTIONS
* Printed circuit board ground lines should be set up with consideration for common impedance. * Take appropriate static electricity measures.
* * * * Containers for semiconductor materials should have anti-static protection or be made of conductive material. After mounting, printed circuit boards should be stored and shipped in conductive bags or containers. Work platforms, tools, and instruments should be properly grounded. Working personnel should be grounded with resistance of 250 k to 1 M between body and ground.
* Do not apply negative voltages.
The use of negative voltages below -0.3 V may create parasitic transistors on LSI lines, which can cause abnormal operation
s ORDERING INFORMATION
Part number MB3878PFV Package 24-pin plastic SSOP (FPT-24P-M03) Remarks
22
MB3878
s PACKAGE DIMENSION
24-pin plastic SSOP (FPT-24P-M03)
* 7.750.10(.305.004)
24 13
Note1: Pins width and pins thickness include plating thickness. Note2: * This dimension does not include resin protrusion.
0.170.03 (.007.001)
5.600.10 7.600.20 (.220.004) (.299.008) INDEX Details of "A" part 1.25 -0.10 .049 -.004
+0.20 +.008
(Mounting height)
0.25(.010) 0~8
1
12
"A"
M
0.65(.026)
0.24 -0.07 .009 -.003
+0.08 +.003
0.13(.005)
0.500.20 (.020.008) 0.600.15 (.024.006)
0.100.10 (.004.004) (Stand off)
0.10(.004)
C
2001 FUJITSU LIMITED F24018S-c-3-4
Dimensions in mm (inches)
23
MB3878
FUJITSU LIMITED
All Rights Reserved. The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering. The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams. The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite). Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.
F0209 (c) FUJITSU LIMITED Printed in Japan


▲Up To Search▲   

 
Price & Availability of MB3878

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X